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SOFT ELASTIC SHELLS UNDERGOING LARGE DEFORMATIONS* 

K.M. KYLATCHANOV and K.F. CHEW 

Soft shells made of elastomers and undergoing large deformations under 
load are studied. The inverse design problem, non-linear under large 
deformations, is solved. The results obtained are illustrated on a two- 
parameter shell of revolution fabricated from a two-constant material. 
The problems of coupling the biaxial and uniaxial zones of the shell and 
of designing the composite shell are clarified. Amongst the papers 
dealing with the theory of soft shells and, generally, under small 
deformations, /l-7/ merit attention. 

1. The equations of the equilibrium of the zero-moment theory of thin shells have the 
form /8, 9/ 

bM T/;;” W + 1’; q,, = 0 (i, p, fi = 1,2) 

Here and henceforth the repeated Greek indices denote summation from 1 to 2. 
For an incompressible material we have 

kF. = (a/a’)-“* = B-l’*, A = aouba8 (a'= ) CI.,O 1, u = ] a,,\) 

(i.: is the extension factor of the transverse fibre and * Qz = @I:=, is the value of the I* 

elastic potentialonthe middle surface of the shell). 
The practice of the analysisof thin-walled technical resin items has shown that the 

deformation of incompressible elastomers is well described by the three-constant elastic 

(1.2) 

(1.3) 

potential 
ill"= pnm2[(1 -I fi)(;.l" $ i.zn + i.6q-- 3) + (1 - f~)(j.;” T 1.;” T j.;” _ 3)] (1.4) 

Here ?.,, ?., are the principal extension factors of the middle surface. We also have 

.A = i.r? L i.22, B = j.l’i.2c, i.: = j.;‘j.l’ (1.5) 

j.l,z=lii[(.A - 28’.)“_+(.-i - 2C’~)‘:j 

For a three-constnat elastic potential the elastic law assumes the form 
Tlj i.,” - ; “” 

- = m [ 1 7 fl - (1 -- PJ j.;“i.i”] 0” - p”, Is-1 (1.6) 

(i.,: - j.,‘j-’ (i 1 -- pj [i_lzj.L” - j.l”j.L? - (i.,” - i.,‘) i.;’ ;_I ‘1 - 

(f - p) [i.;"i.,: - i.lzi.~" T (i.r' - i.??) j.l'i.Ln]) 0 ' 

On the principal axes of deformation uO': = a’: = (I. 0” = a”“i.,m’ and 

T" = !l':-,i-' [I - fi - (1 - ]j) i :"J j.;‘ (;,ln- i.;";.:') olli (1.7) 

7.:' = !l'CC,l-' [ 1 ~ f~ _ (1 -- fi) j In] j.1’ (i.,” - j.;“j.i”) aiJc, T’? = 0 

In particular, for a neo-Hookean material (p = 1. n = 2) 

T'>=&"(&_ B-1a'J) (1.8) 
and on the principal axes we have 

Trr = ph"(i - j.;“j$)/allc, F= @"(l - ?.;2i.;")~U2~c, Tlz= 0 

The shell thickness as before and after deformation (h" and h) are connected, in the 
case of an incompressible material, by the relation 

h z i.,h’=(a ‘a’)-“~ h”=i.;‘h~‘.h, (1.9) 

The physical components of the inherent stress tensor referred to the metric of the 
deformed middle surface are found from the formulas 

l Prikl.Matem.Rekhan.,49,6,99.2-lOGO, 756 



Xf I = x,g,-!- r*g,t x,-z,represents the radius vector of 
rectangular Cartesian coordinate spaoe, then (Fig.1) 

a point on the middle surface in the 

(1.10) 

r- 1 wh2 PIS= atz, alj , 

a WI. *21 
Iram? 1fs3 = d 

Fig.1 
ri,h = I/? (3 + !$_!$) & 

The corresponding relations for the undeformed middle surface follow from the above formulas 
by adding the superscript '. 

The contravariant components of the stress tensor are connected with its principal values 
by the relations 

(1.11) 

where 1 is the angle between the first coordinate line and the first coordinate direction. 

2. As we know /I, 21, the soft shells have very low flexural rigidity and do not, there- 
fore, take up any compressive stresses. A soft shell may have biaxial zones iin which the 
principal stresses are positive), and uniaxial zones (in which one of the principal stresses 
is positive and the other is vanishingly small so that it can be assumed equal to zero). 

Suppose for example /I/ 
t, > 0. t, = 0 (".i! 

in the uniaxial zones. Taking the orthogonal lines of the principal stresses as the coordinate 
lines in the uniaxial zones we obtain (for 7 =(I) from (1.11) 

T" = O,,-'t,. 71' _: T" = (j (2.2) 
and the eqailibriuo Eqs.tl.1) under normal pressure (q,, = (I = const. g' = q* = 0) take the form 

- 
1 8j’;;;;b-F T” @ r’G d V’Q, ?- = , -_- 

1’ (111 C% Q22 
~]~;;;‘I‘“=0 

oz2 (2.3) 

The second of these equations yields 

a fi = @II isi) (2.4) 

i.e. the first coordinate line is a geodesic. From the first and third equation we have 

JrFTLgCZil?i, 
JQli 

_ G 1 
RI c2 @i (2.5) 

Another three equations yield the Codazz-Gauss /6/ relations which can be written, taking 
both Eq. (2.41 and the second relation cf (2.5? into account, in the form 
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3. one of the fundamental problems fox a soft shell is that of design. 
design (plan) the shell such that it takes the necessary fom under the given 
conditions. Since the geometry of the shell and the load are both given, the 
equilibrium equations is linear with respect to the forces sought 

We require to 
loads and support 
system of three 

In the case of an incompressible material we obtain, from (1.2) and (1.9), a system of 
three (essentially different) non-linear algebraic equations for determining the metric tensor 
of the undeformed middle surface 

The above relation, taking Eqs.cl.5) and the obvious relation aafia,b = 2 into account, 
gives the following invariance relations: 

Having found the invariants A and 3 from the non-linear algebraic ststem given above, we 
obtain from (3.1) and (1.10) 

(3.3) 

allo = aB-za”22, 0x2’ = - aB-Za”l~, a2*’ = aB-ia”l~ 

In particular, for the neo-Hookean law (1.8) we have 

(3.4) 

BS -4a~-2Ifllf* -((f'*)*] B* - 2a,gfaf$-'B - 1 =EO 

4. The formulas obtained can also be used 
and first relation of (2.5) yield 

f” = qc1 (a’) 
2ho,,1/G_ ' 

for the uniaxial zone. Thus relations (2.2) 

f’? = fL” ;=i 0 (4.1) 

and, since al? = 0, it follows from the relations 13.3), (3.4) that all'= 0. Thus the material 
coordinate lines are principle (and orthogonal) for the deformation tensor. Moreover, according 
to (1.10) we have 

Jr;;" = l/m, aC1l =i l/allc, aq2 = l,'a?zO (a'l?= alzo = 0) (4.2) 

j/Z= j';;"hlh2, an= l/().l*aIlo), azz = l/(i&~~~') (aI2 = a~= 0) 

and from (4.1) and (3.3; we have 

The invariants are found from the set of Eqs.(3.2) whose right-hand sides have the form 
.- 

P a& and -(a$j2)4 respectively, while for the neo-Hookean law we have 

(4.3) 

5. In the case when the principal coordinate lines are lines of curvature, /6/, R,,-x=0 
and the second Codazz-Gauss relation (2.6) yields I/~==P~(cz~)c~@*). Substituting the expression 
obtained into the remaining two equations and carrying out the transformations with the help 
of relations (2.5), we obtain 

R,_' = L, (a'), R,-' = '1% ICI (a') - i&c, (a') WI (5.i) 

QTn=qc,(a*)/VT;;;;, 4n==*n(c1) 

Here a,,("'), ~*(a*) are arbitrary functions, R is an arbitrary constant and c,(al) is a 
solution of the equation 
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&J(l/i;;;dd) + v, (Cl’ - CJP’) = 0 (5.2) 

6. Consider the axisymmetric deformation of a shell of revolution (Fig.2). We have 
a1 c so, or = 6" (6.1) 

By virtue of the assumption that the deformation is axisyssoetric, we have 

21 ' = P(s') cos 0", z,' = r? (s") sin Cl', tsO = tr" (so) (6.2) 

r1 = r (C)cos V, zr = r (so) sin 6", r8 = z8 (so) 

Let h,(=&),?q(=)i& be the principal extension factors along the meridianal and peripheral 
directions. Fig.3 and its analogue for the deformed configuration imply (' = &'r%") 

rC' = cos $. x3" = - sin f$, r' = A, cos m, tS' = --)i,sin f (6.3) 
I., = ds ds”, lo = r Y 

(6.4) 

Taking the above relations into account, we can write the solution of the equilibrium 
Eqs.(l.l) inthe form 

(6.5) 

(T, = i.,T”, Te = r”2hJ22) 

where the following dimensionless quantities were used: 

? = r I?,. S = s I?,, I; = P~(‘:‘,qR,?), t? = qR,‘(2ph) (W 

Here RO is the characteristic linear dimension of the middle surface or the radius of 
its curvature, q is the uniform pressure and 2nP is the excess pressure. If the shell is 
covered from the top and only the normal pressure acts, then P = 0 and k = 0. 

Using the 

dr' 

Fig.2 Fig.3 

relations (1.7), (6.4) and (6.5) we obtain 

I'* [l T fi - (1 - 6) &I"1 (I.," - D-1) = j, 

1 * [l - 6 - (1 - b, ;.,“I (Ati” - D') = je 

the following: 

(6.7) 

Adding and multiplying the Eqs.(6.7), we obtain a system of equations 
invariants C and D. Therefore from (6.7) we obtain 

I.,” = f c f 1, - ‘e ‘8 - fe 
I T p 7 (I - fi) D-1 

, %e” = f C - 
I$ p+(l-fi) DT 

Now from (6.3) we find, in succession, 

rr(s) = Xi' (s) r(s), dsC= i.;‘ds 

COSc$‘~ =A,$+., 
d Ii;’ (s) r WI 

ds 

for determining the 

(6.6) 
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We recall that expressions (6.5) hold for the biaxial zone, i.e. when the inequalities 
(q>, 0. 0 > 0) hold, we have 

k L X 
I > IJ k-)-Z' dc 
: bin q ’ _ ,2-->o sln’q cs :i* T 

When e=1, we have according to (1.7) 

Differentiating the above relations we obtain 

(6.9) 

(6.10) 

Passing now t0 the CaSe of a UniaXial zone we note that for a shell of revolution (Fig.2) 
we have 

ds = l~‘n,,d~’ :m H, (q) do. jr;>, = r = R, $,I! (i (r;.ll) 

Taking the first of the above relations into account, we transfom (5.2) to the form 

d+,: (dV)' - c1? = If-.: 

with the obvious general soiuticr, 

According to (6.11) and (5.1) 
E: (41 = f =- COl,.i. d = 0. C = 2 f 

so that, passing to T, and T, (6.5) we ficd 

(6.12) 

7. Let us consider tl;e shells cf re,:clztio: l~!;cse deformed middle surfaces be;cng to the 
two-parameter family 

RI = 
R.. 

nz LYz 
n.. 

(1 -.,.;"'F'"'? ' (1 - ','>,I,? q 2' 

Mere /l@, ll! T;== U corresponds tt a sphere, -j = --1 to a parabcloid, y< 
boloids and 1; >, - 1 tc ellipscids of revclztion. 

T&i>< into accc,int (7.1:, (6.5' and (6.E: we obtain, fcr i, = fi, 

and taking into account the relation 

which follows from (6.4), we obtain (h = conct) 

(j._-IT,)' = 1 g., [-y till ‘) cot ql 
(i.,_‘T,)’ = 1 &ks I---;: Elll q co5 ‘i (3 f ?' 5111~ (i)l 

(T.lJ 

I tc hyper- 

(i.3) 

(i.4) 

Let us reca:: thaz the relations cbtained in Sect.7 hold only for *-he biaxia zones vhen 
TS> 0. T&>U. i.e. accordin? tc !7.2;, when 

[c<'i*. 511,? 'i* = y-1 (7 .<h) 

This implies that conditlcn (7.5) imposes restrlctions only on the elliptical shells of 
revolution. If a. b are the ellipse semiaxes, then y = (a b)‘- 1 and sin (ir = i(c bl' - Ii-':. From 
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this it follows /l/, in particular, that when b/a> 1/1/I?= 0.7 or y<i, the elliptical shell 
is wholly inthebiaxial stress state. 

Computations were carried out for the potential (2.7) at 9= 1. In Fig. &a&= 0.5) the 
design forms corresponding to curve 1 are shown by curve P(s== &s-0.89) and curve 3(n= 4, 
B= 6.18). Fig.4b shows the distribution of the quantities &A, and ho/h (the dashed line) 
corresponding to a= 4. In Fig.5 (v-0.9) the design forms corresponding to curve 1 are: curve 
2 (n = 2, i = 0.45) and curve 3 (II = 4, 8 = 0.5%). A property characteristic for sufficiently shallow 
shells is observed: they become shorter during inflation. 

Fig.4 Fig.5 

8. When v>l, only the part of the elliptical shell satisfying the condition (7.5) is 
in a biaxial stress state. To complement the "missing" part, we must add to it the uniaxial 
zone (6.12). The following obvious relations are used as conditions of coupling between the 
uniaxial (minus index) and biaxial (plus index) parts: 

r+Xz r- ( q+ = r#-, (i,,‘T.)+ = (%;‘T,)- (6.1) 

The second of these relations ensures that there are no shearing forces which could not 
be balanced against anything else in the zero-moment state. When the second relation holds, 
the third one ensures the transfer of the vertical axial force across the line of coupling. 

According to the last expression of (6.3) the natural requirement r"* = r"- (ensuring the 
continuity of the design form) is equivalent to 24' = Lo-. The latter is given by the third 
condition of (8.1) in accordance with (6.9) h,+ = ks- and (?.,-lTe)' = (i.,-lTe)- when p* = p-, h+ = 
h-). The last equation, taking (7.2) and (6.12) into account , shows #at the biaxial and uni- 
axial zone can be coupled to each other only when g = qF+ (7.5). Moreover, the conditions 
of coupling (8.1) imply that R-: = 0. e = 8y"~R,-?. Thus for the uniaxial zone (S = II,;'-'.. 1 -8) 

,, 

The first of the relations of (7.1: and (8.2; yield I?,' = R,-. i.e. the curvature of the 
middle surface is alsc continues on the oatchirq line. 

0 I 2 

Fig.6 Fig.7 

Thus, according to (7.2), 17.5) and (8.2) (I 

(x;'r,)+ = (i.;'T,)- = pha/j/Y, (P.;'Te)+ = (I.;'Te)- = 0 

Substituting these expressions into (6.9), we obtain 

>.@'Z ;.a-= i.,, i.,'= %*- --= i.;?, i$"-- I.,"=iTtt,llz ]'Tj 

Substitutin9 in turn the last expressions into (6.10), we obtain the following relations 
along the matching line: 
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Thus the quantities k,, & which exe continuous along the matching line, have discontinuous 
derivatives on this line. The relations (6.3), (6.8) yield 

cos cp" = ?&j-r cos m -j- r&*%eie 

from which we see that the discontinuity of &' implies the discontinuity of the angle on the 
design form. 

Fig.6a shows a shell of revolution corresponding to 8" 3. Curve 1 corresponds to the 
surface of a two-parameter family (7.1). Curve 2 corresponds to the composite shell (with a 
biaxial and uniaxial zones), Fig.6b shows the discontinuzties in 4' and I,' on the matching 
line (the dashed line) discovered above. A family of design forms depending on the value of 
the parameter J corresponds to the composite shell 2. Here the longer 8, the more the design 
form differs from the loaded form. In the course of computations a limit form (curve 3) was 
discovered, corresponding to ijmax (at large values of B, the extension factors of h,,& no 
longer satisfy the inequality 

which follows from (6.8)). 
It was noted by Kolpak that smmar corresponds to compression of the neighbourhood of the 

pole of the expanded form. He also proposed that 5mmnx should be determined from the eompression 
condition (' = &ds") 

* r. 
TgC” = To = (I, ;,,, (FF (f) - f = rgC”s’ + ’ ?“’ c y-ros2+.*. ) (8.3) 

Here and henceforth the lower zero index denotes the values of the quantities when p= 0. 
Let us consider the compression condition. First, from (7.2), (7.4) and relations obtained 

by differentiation of the latter we obtain, taking 17.3) and (7.1) into account, 

($lT& = (&;'T,)* = @:. (h,'T&' 3 (A;'T&'= 0 

Taking these equations into account we obtain, from (6.P), (6.10) and expressions obtained 
by their differentiation, 

i, i. = Xi0 = ;.,. (;.3fi - i.;*")jn = J *5; AlO’ = i., = 0 P-4 

(b.5) 

Taking into account the third relation of (6.3), (7.3), (7.1) and (8.4), we obtain 

TD = Cl, TO' = .x0, rgr = 0, rOn' = A,,' - X,SR,-2 (8.6, 

Now the first relation of (6.8: and the above relations together yield 

t,,: = (1. r, . = 2, PVC” =I!, r,” = A,] [FLY - 3&"3 

This, together with (8.5), (8.6!, implies that the first condition of (8.3) holds 
identically and the second condition leads to the equation 

defining, together with [8.4t Fmni. corresponding to the limiting possible design form. Fig.7 

shows curves of Frnos for various R. 
We note that the matter discussed in Sect.8 refers to the case when the uniaxial zone is 

axisymmetric (without folds). The problem of the stability of such a stress-strain state 
requires a special consideration. 

The authors thank E.P. Kolpak for valuable comments and discussions. 
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ON THER~OE~STIC STRESSES IN AN ASY~ETRICALLY HEATED HALF-SPACE* 

L.N. GERMANOVICH, L.V. ERSHOV and I.D. KILL 

A quasistatic problem of thermoelasticity is considered for a half-space 
in the case of convective heat exchange (boundary condition of the third 
kind). In the case of boundary conditions of the first and second kind 
all results are obtained in exactly the same manner. The exact solution 
of the problem is found in the form allowing the construction of an 
approximate solution, simple and suitable for numerical computations and 
based on the asymptotic expansion of the temperature and the stresses as 
1 - 0. The problem is reduced to determining single integrals of simple 
functions, and inmany cases the integrals can be expressed in terms of 
elementary functions. The error of the approximate solution is estimated. 

Unlike the results obtained earlier in /l-3/, the temperature 
distribution in the medium adjacent to the half-space is not assumed to 
be axisymmetric, i.e. a general asymmetric distribution is studied under 
certain constraints that are not significant from the physical point of 
view. Such asymmetric distributions are very common in practice /4/. 
The results of this paper can be used to study the fracture of brittle 
materials which can occur under the action of thermoelastic stresses /5/. 

It should be noted that application of the numerical methods which 
were successfully used in solving the symmetric problem of thermoelasticity 
/6/ encounters, in the case of asymmetric, obvious difficulties caused 
by the increased dimensionality of the problem. 

1. The initial temperature of the elastic half-space z> 0 and the medium filling the 
region z<O is T = 0. At the instant t = cl the temperature of the medium rises instantaneously 
and assumes the distribution (r, q. z are cylindrical coordinates) 

8 = 0 (r. (I). 6l (r. q 7 2n) = 8 (r. r+) (1.1) 
and the function O(r.q) can be written in the form of a Fourier series whose coefficients 
admit of the n-th order Hankel transformation in r 


